Multivariate Polynomials in Sage
نویسنده
چکیده
We have developed a patch implementing multivariate polynomials seen as a multi-base algebra. The patch is to be released into the software Sage and can already be found within the Sage-Combinat distribution. One can use our patch to define a polynomial in a set of indexed variables and expand it into a linear basis of the multivariate polynomials. So far, we have the Schubert polynomials, the Key polynomials of types A, B, C, or D, the Grothendieck polynomials and the non-symmetric Macdonald polynomials. One can also use a double set of variables and work with specific double-linear bases like the double Schubert polynomials or double Grothendieck polynomials. Our implementation is based on a definition of the basis using divided difference operators and one can also define new bases using these operators.
منابع مشابه
Ore Polynomials in Sage
We present a Sage implementation of Ore algebras. The main features for the most common instances include basic arithmetic and actions; gcrd and lclm; D-finite closure properties; natural transformations between related algebras; guessing; desingularization; solvers for polynomials, rational functions and (generalized) power series. This paper is a tutorial on how to use the package.
متن کاملMultivariate Bernoulli and Euler polynomials via Lévy processes
By a symbolic method, we introduce multivariate Bernoulli and Euler polynomials as powers of polynomials whose coefficients involve multivariate Lévy processes. Many properties of these polynomials are stated straightforwardly thanks to this representation, which could be easily implemented in any symbolic manipulation system. A very simple relation between these two families of multivariate po...
متن کاملHigher Order Degenerate Hermite-Bernoulli Polynomials Arising from $p$-Adic Integrals on $mathbb{Z}_p$
Our principal interest in this paper is to study higher order degenerate Hermite-Bernoulli polynomials arising from multivariate $p$-adic invariant integrals on $mathbb{Z}_p$. We give interesting identities and properties of these polynomials that are derived using the generating functions and $p$-adic integral equations. Several familiar and new results are shown to follow as special cases. So...
متن کاملIntegral representations for multivariate logarithmic polynomials
In the paper, by induction and recursively, the author proves that the generating function of multivariate logarithmic polynomials and its reciprocal are a Bernstein function and a completely monotonic function respectively, establishes a Lévy-Khintchine representation for the generating function of multivariate logarithmic polynomials, deduces an integral representation for multivariate logari...
متن کاملCombinatoire alg\'ebrique li\'ee aux ordres sur les permutations
This thesis comes within the scope of algebraic combinatorics and studies problems related to three orders on permutations: the two said weak orders (right and left) and the strong order or Bruhat order. We first look at the action of the symmetric group on multivariate polynomials. By using the divided differences operators, one can obtain some generalisations of the Schur function and form ba...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1207.0398 شماره
صفحات -
تاریخ انتشار 2011